
GridFTP Multilinking
John Bresnahan,1,2,3 Michael Link,1,2 Rajkumar Kettimuthu,1,2 and Ian Foster1,2,3

1Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
2Computation Institute, University of Chicago, Chicago, IL 60637

3Department of Computer Science, University of Chicago, Chicago, IL 60637
{bresnaha, mlink, kettimut, foster}@mcs.anl.gov

Abstract—GridFTP is the de facto standard in projects
requiring secure, robust, high-speed bulk data transport.
For example, the high energy physics community is basing
its entire tiered data movement infrastructure for the
Large Hadron Collider computing Grid on GridFTP; the
Laser Interferometer Gravitational Wave Observatory
routinely uses GridFTP to move 1 TB a day during
production runs; and GridFTP is the recommended data
transfer mechanism to maximize data transfer rates on the
TeraGrid. GridFTP is well known for efficiently
transferring data from one destination to another. In this
paper, we present a new feature for GridFTP –
multilinking – and show how it can be used to transfer a
single file to many destinations efficiently.

I. INTRODUCTION
Large-scale collaborative science applications
necessitate efficient and secure transport of data across
geographically dispersed locations. The GridFTP [1]
extensions to the File Transfer Protocol [2] define a
general-purpose mechanism for secure, reliable, high-
performance data movement. The Globus
implementation of GridFTP [3] provides a modular and
extensible data transfer system architecture suitable for
wide-area and high-performance environments. Key
features of GridFTP include the following:
1. Performance: Typical GridFTP provides order of
magnitude performance improvements compared to
standard FTP. GridFTP achieves good performance by
using non-TCP protocols such as UDT [4] and parallel
streams to minimize bottlenecks inherent in TCP/IP.
2. Cluster-to-cluster data movement: GridFTP can do
coordinated data transfer by using multiple computer
nodes at the source and destination. This approach can
increase performance by another order of magnitude.
3. Reliability: GridFTP provides support for reliable and
restartable data transfers.
4. Multiple security options: The Globus GridFTP
framework supports various security options, including
Grid Security Infrastructure (GSI) [5], anonymous
access, username- and password-based security such as
regular FTP servers, SSH-based [6] security, and
Kerberos [7].

5. Modularity: The XIO-based [8] Globus GridFTP
framework makes it easy to plug in other transport
protocols. The Data Storage Interface (DSI) [9] allows
for easier integration with various storage systems.
6. Third-party control: GridFTP also allows secure third-
party clients to initiate transfers between remote sites.
7. Partial file transfer: Scientists often find it expedient
to download only portions of a large file, instead of the
entire file. GridFTP supports this capability by
specifying the byte position in the file to begin the
transfer.
8. Negotiation of TCP buffer/window sizes: GridFTP
employs FTP command and data channel extensions to
support both automatic and manual negotiation of TCP
to get optimal performance.

In this paper, we take advantage of the modularity
provided by GridFTP to achieve the following:

- Efficient transfers of a single dataset to many
endpoints.

- An architecturally sound method for forming
GridFTP overlay networks.

- An architecture for routing datasets from
external networks to internal non-routable IP
addresses

In addition, we describe:

- An experimental study to illustrate the benefits
of this new functionality.

- The protocol enhancements and the usage
options.

The rest of the paper is organized as follows. In Section
2, we present related work. In Section 3, we describe the
architecture in detail. In Section 4, we present the
experimental study. In Section 5, we highlight the
enhancements to the GridFTP protocol and show how
the new functionality can be utilized by using the
commonly used GridFTP client “globus-url-copy.” In
Section 6, we present a brief summary.

II. RELATED WORK
Work most closely related to ours is that presented by

Rizk et al. [10]. Our network overlay architecture
contribution is largely incremental. In our work we use
the Globus XIO interface to add the needed
functionality; in their work Rizk et al. used the DSI
(Data Storage Interface) [9]. From a software
engineering perspective XIO is a more modular, safer,
and reusable way to achieve packet forwarding. From a
performance and functional viewpoint, however, we
expect the results to be similar to those presented in [10].
The most significant difference between our work and
theirs is that we present two additional important
advances: dataset broadcasting and internal routing to
non-routable IP addresses. These two advances add
significant power to GridFTP data transfers.

An extensive amount of work has been done in

network multicast and data broadcast [11-16]. With
regard to the broadcasting of datasets, we do not claim to
achieve a new functionality; rather, we present a new
way to achieve deployment of such functionality. We
offer all of the known advantages of GridFTP, including
speed, security, and availability, and we couple those
advantages with the dataset broadcasts to many
endpoints. Unlike other work in this area, we do not
require new protocols or new software stacks. We have
leveraged the extensibility of an existing and commonly
deployed service to provide an important need to
scientific communities.

III. ARCHITECTURE
The purpose of this work is to efficiently route a single
dataset to many locations. Our goal is to use all available
network cycles effectively, moving the total amount of
data (number of destinations * file size) at network
speeds. Ideally we would like to transfer to all
destinations in the time it takes to transfer to a single
destination. Network latency, disk latency, and
bandwidth make this goal difficult to fully achieve.

Distributing the data to many endpoints is not difficult
and has been a feature of globus-url-copy (a popular
GridFTP client) [17] for some time. It would be simple,
but slow, to have the client loop over the destination set,
sending to each in series. Of course the transfer time
would scale linearly with the number of destinations and
thus be undesirable.

In our architecture, destination servers are configured so
that they can forward packets along to other endpoints.
Thus the GridFTP servers act both as servers receiving
data and as clients sending data. The servers are set up as
a tree such that the first destination writes the data to

disk (if it is configured to do so) and then forwards it on
to N more hosts (by default N is 2). This process is
repeated until all destinations have received the dataset.

One can think of the architecture as a directed graph.
Each destination is a vertex with N edges connecting it
to N other vertices. A spanning tree is formed connecting
all vertices. The degree of any one vertex is a client side
configuration option. Figure 1 illustrates this for the
default value of N, which is 2. The data blocks are sent
first from the client to a root destination. The root
destination then forwards it to two more servers and so
on, forming a spanning tree. The forwarding of this data
is done at the packet level. It does not wait for a
complete file to arrive at any given node. Thus we can
overlap much of the latency involved in each transfer.

Figure 1: Architecture of GridFTP multilink.

A. Globus XIO
GridFTP uses the Globus Extensible Input Output (XIO)
[8] interface for network and disk I/O operations. The
Globus XIO framework presents a single, standard
open/close read/write interface to many different
protocol implementations. The protocol
implementations, called drivers, are responsible for
manipulating and transporting the user’s data. Drivers
are grouped into a stack. When an I/O operation is
requested, the Globus XIO framework passes the
operation request down the driver stack. An XIO driver
can be thought of as a modular protocol interpreter that
can be plugged into an I/O stack without concern about

the application using it. This modular abstraction is what
allowed us to achieve our success here without
disturbing the application’s tested code base and without
forcing endpoints to run new and unfamiliar code.

Figure 1 shows five boxes with different names. The
“Client” box represents client logic; the “Server” box
represents the GridFTP server logic. The “Data,” “MC,”
and “File” boxes represent Globus XIO drivers. The
“Data” driver handles the network interactions for the
GridFTP server, and the “File” driver handles the file
system interactions. “MC” is the new XIO driver created
to provide multilink capability. The multilink
functionality is achieved by allowing the GridFTP client
to add the new XIO driver, the multilink (MC) driver, to
the GridFTP server’s disk I/O stack. Because of the
modular driver abstraction that Globus XIO provides, as
the GridFTP server writes data blocks to its file system,
the data blocks are first passed through the multilink
driver. As the multilink driver passes the data block on
to be written to disk, it also forwards the block on to
other GridFTP servers in the tree simultaneously. This
approach is minimally invasive to the tested and robust
GridFTP server.

B. Network Overlay

Figure 2: Standard GridFTP transfer.

Figure 3: Transfer using a GridFTP overlay network.

In addition to allowing for dataset broadcasts, the

multilink driver and this architecture allow us to create a
network overlay where many GridFTP servers act as
routers, forwarding packets along to each other until they
get to the final destination where there are written to
disk. The advantage of this type of system has been
actively researched by Pheobus [18]. The multilink
driver can be configured to only forward data along to
the next server, and to not write it to disk. Further, it can
be told to only forward to a single endpoint. With this
configuration, shown in Figures 2 and 3, we achieve the
network overlay described above.

Figure 2 shows the standard case where data is sent from
a client to a server through the Internet. The Internet
does the routing and the client does not have any control
over it. Figure 3 shows how the multilink driver can be
used to route data through the network via GridFTP
servers. This feature allows the user to have greater
control over the network path the data takes and thus
achieve the advantages provided by network overlay
research.

C. Internal Routing
Internal, nonroutable IP addresses are a common way to
configure the worker nodes of a cluster. NAT [19] is
used to provide the worker nodes with nonroutable IP
addresses. Thus they cannot be contacted directly from
the Internet. Access to these worker nodes is achieved by
first contacting an externally visible head node that has a
routable external IP address as well as a nonroutable
internal IP address.

Because the internal worker nodes cannot be contacted
directly, this common setup makes sending data directly
to data node difficult. Common workarounds for this
problem involve awkward port forwarding or manually
transferring the data to the head node and then again
manually transferring it to the worker nodes. This
process is not only cumbersome but also inefficient.

The GridFTP multilink functionality allows a client to
form a network overlay route such that the first hop
contacts the head node, which then contacts the internal
worker node. This process results in a direct transfer to
the worker node without using disk space on the head
node and without additional user or system administrator
intervention.

IV. EXPERIMENTAL RESULTS
To show the effectiveness of this architecture, we ran

experiments on the TeraGrid [20]. We used 30 nodes at
TeraGrid’s University of Chicago/Argonne National
Laboratory site. The hosts are dual 1.3 GHz Intel
Itanium processors with 4 GB of memory. We
designated 29 hosts as destinations, and we ran
multilink-enabled GridFTP servers on them. One node
was designated as the client node, and from it all
transfers were started. All transfers were performed with
globus-url-copy (a command-line GridFTP client), and
the TCP buffer size was set to 128 KB. We provided as
input to globus-url-copy 29 pairs of source and
destination URLs to measure the performance in the
absence of multilink functionality. In this case the source
file was sent to each endpoint serially. We then
transferred the source file to all destinations using the
multilink broadcast architecture.

Figure 4: Comparison of the total transfer time for one-
to-many GridFTP transfers with and without multilink

capability.

Figure 5: Comparison of the throughput for one-to-many
GridFTP transfers with and without multilink capability.

Figure 4 shows the completion time of a broadcast

session against the number of destinations. The “serial”
line corresponds to the transfers performed in a serial
fashion from the client. All other lines represent the
multilink sessions performed with this architecture. Each
line represents a different vertex degree in the spanning
tree (i.e., each server forwarding to a different number of
destinations). Here “cc1,” or concurrency1, corresponds
to each server forwarding to one other server, “cc2”
corresponds to each server forwarding to two other
servers, and “cc4” corresponds to each server forwarding
to four other servers. As expected, the total transfer time
for the serial transfer scales linearly with increasing
number of destinations, whereas the total transfer time
for multlink sessions very slowly increases with more
destinations.

Figure 6: Effective throughput for various cases.

Figure 5 shows the throughput achieved for a multilink
session by using serial transfers and different vertex
degrees in the multilink architecture. The throughput is
measured by dividing the size of the file being sent (1
GB) by the time it takes for the file to reach all the
destinations. We note that the throughput achieved with
multilink architecture is significantly better. Interesting,
the throughput achieved with “cc2” is better than “cc1”
and “cc4.” We believe that the resources at the
intermediate servers (for example, the network interface
card) are not effectively utilized with “cc1” and the
resources are used to a maximum extent with “cc2.”
Thus, “cc4” does not bring any further improvements. In
fact it hurts the performance because of increased
contention for resources. An alternative explanation is
that the latency is additive in terms of the tree. Assume,
for example, that the end-to-end latency for “cc1” is n.
The end-to-end latency for “cc2” should be log(n), plus

the additional processing latency added at each
intermediate node to forward the data to an additional
node. For “cc2” the latency added by additional
processing is less than the latency saved by shortening
the tree. When we go to “cc4,” the additional processing
adds more latency than what is saved by shortening the
tree.

Figure 6 shows the effective throughput achieved for
various cases. Effective throughput is defined as
(number of destinations * file size) / time. As the number
of destinations increases, the closer the effective
throughput is to the throughput achieved for a single
destination transfer, the better it is. The overhead
introduced by the intermediate nodes in the multilink
architecture can be measured by how far off the effective
throughput is from the throughput of a single destination
transfer.

V. PROTOCOL DETAILS
The additions to the GridFTP protocol are minor. Every
server in the tree (except for leaf nodes) becomes a client
to another server, but that client speaks the standard
GridFTP protocol. The only change needed is a
command to add the multilink driver to the file system
stack:

SITE SETDISKSTACK 1*{<driver name>[:<driver
options>]}

The second parameter to the site command is a comma-
separated list of driver names optionally followed by a
“:” and a set of driver-specific URL encoded options.
From left to right, the driver names form the I/O stack
from bottom to top. Adding the multilink driver to this
list will enable the multilink functionality. For security
reasons the GridFTP server does not allow clients to load
arbitrary XIO drivers into the server. The GridFTP
server admin must white list the drivers individually.

A. Usage
The multilink functionality can be used with globus-url-
copy by using the command-line option “-mc
<filename>.” The file must contain a line-separated list
of destination URLs., for example:
 gsiftp://host1:5000/home/user/tst1
 gsiftp://host2:5000/home/user/tst2
 gsiftp://host3:5000/home/user/tst3

The source URL is specified on the command line as

always. An example globus-url-copy command is

 % globus-url-copy -mc multilink.file
gsiftp://localhost/home/user/src_file

ACKNOWLEDGMENT
This work was supported in part by the Office of
Advanced Scientific Computing Research, Office of
Science, U.S. Dept. of Energy, under Contract DE-
AC02-06CH11357, and in part by National Science
Foundation’s CDIGS.

REFERENCES
[1] W. Allcock, “GridFTP: Protocol Extensions to FTP for the

Grid,” Global Grid Forum GFD-R-P.020, 2003.
[2] J. Postel and J. Reynolds, “File Transfer Protocol,” IETF, RFC

959, 1985.
[3] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.

Dumitrescu, I. Raicu, and I. Foster, “The Globus Striped
GridFTP Framework and Server, SC'05,” ACM Press, 2005.

[4] Y. Gu and R. L. Grossman, “UDT: UDP-based Data Transfer
for High-Speed Wide Area Networks,” Comput. Networks 51,
no. 7 (May 2007), 1777–1799.

[5] www.globus.org/security/overview.html
[6] T. Ylonen and C. Lonvick, eds., “The Secure Shell (SSH)

Authentication Protocol,” IETF, RFC 4252, 2006
[7] http://web.mit.edu/Kerberos/
[8] W. Allcock, J. Bresnahan, R. Kettimuthu, and J. Link, “The

Globus eXtensible Input/Output System (XIO): A Protocol
Independent IO System for the Grid,” in Proceedings of the 19th
IEEE International Parallel and Distributed Processing
Symposium - Workshop 4, Vol. 5, IEEE Computer Society,
Washington, DC, 2005. 179.1. DOI=
http://dx.doi.org/10.1109/IPDPS.2005.429

[9] R. Kettimuthu, M. Link, J. Bresnahan, and W. Allcock, “Globus
Data Storage Interface (DSI) – Enabling Easy Access to Grid
Datasets,” First DIALOGUE Workshop: Applications-Driven
Issues in Data Grids, Aug. 2005.

[10] P. Rizk, C. Kiddle, and R. Simmonds, “A GridFTP Overlay
Network Service,” in Proceedings of the 7th IEEE/ACM
International Conference on Grid Computing, 2006.

[11] M. Piatek, T. Isdal, T. E. Anderson, A. Krishnamurthy, and A.
Venkataramani, “Do Incentives Build Robustness in Bittorrent?”
in NSDI. USENIX, 2007.

[12] http://www.iam.unibe.ch/~rvs/research/summer_school_2005/T
R%20RVS%2005.doc

[13] R. Sherwood, R. Braud, and B. Bhattacharjee, Slurpie: a
cooperative bulk data transfer protocol. In Proceedings of the
23th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM). IEEE Computer
Society, Los Alamitos, CA, 2004, 941-951.

[14] M. Mysore and G. Varghese, “FTP-M: An FTP-Like Multicast
File Transfer Application,” Technical Report. UMI Order
Number: CS2001-0684, University of California at San Diego,
2001.

[15] http://www.tcnj.edu/~bush/uftp.html
[16] K. Lee, S. Ha, AND V. Bharghavan, “RMA: A Reliable

Multicast Architecture for the Internet,” In Proceedings of the
IEEE Infocom '99, Vol. 3, March 1999, pp. 1274-1281.

[17] http://www.globus.org/toolkit/docs/4.0/data/gridftp/rn01re01.ht
ml

[18] http://e2epi.internet2.edu/phoebus.html
[19] K. Egevang and R. Francis, “The IP Network Address

Translator,” IETF, RFC 1631, 1994.
[20] TeraGrid. http://www.teragrid.org.

